The GRAPEX Project: A Multi-scale Approach to Water and Energy Exchange in Vineyards

Many participants are contributing to the GRAPEX project..... GRAPEX=Grape Remote sensing Atmospheric Profile Evapotranspiration eXperiment

William Kustas¹, Martha Anderson¹, Kyle Knipper¹, Feng Gao¹, Joe Alfieri¹, Lynn McKee¹, John Prueger², Jerry Hatfield², Chris Parry³, Andrew McElrone³, Larry Hipps⁴, Alfonso F Torres-Rua⁵, Mac McKee⁵, Luis Sanchez⁶, Maria Mar Alsina⁶, Nick Dokoozlian⁶, Forrest Melton^{7,8}, Kirk Post⁷, Christopher Hain⁹ Héctor Nieto¹⁰, Nurit Agam¹¹, Ting Xia¹²

¹USDA-Agricultural Research Service, Hydrology and Remote Sensing Laboratory, Beltsville, MD
 ²USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA
 ³USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA
 ⁴Plants, Soils and Climate Department, Utah State University, Logan UT
 ⁵Department of Civil and Environmental Engineering, Utah State University, Logan, UT
 ⁶Viticulture Research, Ernest & Julio Gallo Winery, Modesto, CA
 ⁷School of Natural Resources California State University of Monterey Bay, Marina CA
 ⁸NASA Ames Research Center, Moffett Field, CA
 ⁹NASA Marshall Space Flight Center, Huntsville AL
 ¹⁰IRTA (Institute for Food and Agricultural Research and Technology) LLIEDA Spain
 ¹¹Jacob Blaustein Institutes for Desert Research, Ben-Gurion University, Beijing, China

USDA is an equal opportunity provider and employer.

Irrigation Scheduling in Viticulture

Current Operational ET Estimates for Irrigation Scheduling

Limitations of Crop Coefficient for actual ET

GRAPEX Study site

The measurements were collected in two vineyards located approximately 32 km (~20 mi) northeast of Lodi, CA (38.29°N, 121.12°W).

East-West Rows spaced ~3.3 m (11 ft). Vines spaced ~1.5 m (5 ft).

North Vineyard (site 1):
~ 34.4 ha (85 ac).
Mature vines.

South Vineyard (site 2)
~21 ha (52 acre).
Young vines.

South Vineyard (site 2)

North

Vineyard

(site 1)

Bare soil, cover crop & vine canopy: 3 sources

GRAPEX site measurements

The two vineyards were heavily instrumented to measure meteorological, vegetation, and soil conditions. Measurements included: > meteorological quantities, e.g. wind speed, air temperature, and precipitation. > surface energy balance. > wind and friction velocity profiles at four[†] levels. > surface/canopy temperature. > vine water use via sap flow sensors. soil temperature/moisture at

multiple depths.

^{† †} During IOPs, wind profile data was also collected at a fifth level (~1.5 m) , beneath the canopy.

GRAPEX site measurements

NASA Soil Moisture Profile Network

FTW.

NASA Met

North Vineyard USDA/Gallo Soil Moisture Profiles

South Vineyard USDA/Gallo Soil Moisture Profiles

Profile Soil Moisture and Sapflow Network

GRAPEX Measurements During IOPs

Below canopy wind & water vapor turbulence rcraft/UAV –based high resolution is/NIR and thermal-IR

UAV

Tower-based Thermal/Optical Scanner

Canopy T & CO2

Spectral & LAI

solar radiation divergence

Scintillometry

Additional GRAPEX Measurements During IOPs

IRT sensor network

Micro-Bowen ratio systems

Leaf & Canopy Hyperspectral

GRAPEX LAI Measurements During IOPs (2014-16)

GRAPEX Intensive Observation Periods (IOPs)

TSEB Approach

 $\frac{System, soil, canopy budgets}{RN = H + LE + G}$ $RN_{S} = H_{S} + LE_{S} + G$ $RN_{C} = H_{C} + LE_{C}$

 $\frac{Two-source\ approximation}{\mathsf{T}_{RAD}(\theta)^4 \sim \mathsf{f}_{C}(\theta) \,\mathsf{T}_{C}^4 + [1-\mathsf{f}_{C}(\theta)] \,\mathsf{T}_{S}^4}$

<u>Temperature constraint</u> H_c, H_s, RN_c, RN_s, G

<u>Residual</u> LE_S = RN – H – G – LE_C

Advantages of TSEB

Advantages of TSEB

Treats soil/plant-atmosphere coupling differences explicitly

Accommodates off-nadir thermal sensor view angles

Provides information on soil/plant fluxes and stress

Modification of radiation extinction for vine canopy architecture

Measurements

Wc

F

h

h

Refined radiation algorithm

~f

Model validation

Radiation Modeling in Vineyards

Modification of wind profile in the canopy air space for vine canopy for canopy architecture

TSEB-derived ET and T Using UAV Imagery

Partitioning of ET into T and E: Observations and Model Estimates

Sap-flow vs EC-Flux Partitioning

TSEB vs EC-Flux Partitioning

TSEB vs EC/Micro Bowen Ratio

PhoDAR (LIDAR-like) data

Automatic soil / vegetation discrimination, canopy volume relate to yield

Shadow Detection Algorithm

True Color Image

Shadowed areas highlighted = shadowed pixels

GRAPEX Sites Expanded: to New Climate Zones & Varieties

6

Preliminary Results from GRAPEX

Crop coefficient-based techniques have limited utility for estimating ET and stress in vineyards.

• Refinements to TSEB model parameterizations for unique canopy structure, architecture and row spacing/orientation using the data collected from GRAPEX is improving model performance.

The capability of resolving vine transpiration from interrow evaporation/transpiration may depend on pixel resolution.

•Very high resolution imagery from UAVs may provide valuable information on landscape features and vine conditions not detectable at satellite resolutions.